MATLAB® Compiler SDK™
Python® User's Guide

7

MATLAB

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ Python® User's Guide
© COPYRIGHT 2012-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2015 Online only New for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017h)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)
September 2019 Online only Revised for Version 6.7 (Release R2019b)
March 2020 Online only Revised for Version 6.8 (Release R2020a)
September 2020 Online only Revised for Version 6.9 (Release R2020b)

March 2021 Online only Revised for Version 6.10 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Python Package Installation

1]

Install a MATLAB Compiler SDK Python Package 1-2
With the Generated Installer 1-2
Without the Generated Installer 1-2

2|

Integrate a Python Package0.... 2-2
Import Compiled Python Packages 2-3
Initialize the MATLAB Runtime 2-4
Provide MATLAB Runtime Startup Options 2-4
Start MATLAB Runtime with Compiled MATLAB Functions 2-4

Invoke a Compiled MATLAB Function 2
Invoke a MATLAB Function with a Single Output 2-
Invoke a MATLAB Function with Zero Outputs 2

Receive Multiple Results as Individual Variables 2-
Receive Multiple Results as a Single Object 2-
Invoke a Compiled MATLAB Function Asynchronously 2-8
Integrate Python Packageson MacOS X 2-9
Differences Between MATLAB Engine API for Python and MATLAB
Compiler SDK e 2-10

3|

Pass Data to MATLAB from Python 3-2
MATLAB Arrays as Python Variables 3-3
Create MATLAB ArraysinPython 3-3
MATLAB Array Attributes and Methods in Python 3-4
Multidimensional MATLAB Arraysin Python 3-5

iii

Index Into MATLAB Arraysin Python 3-5

Slice MATLAB Arraysin Python 3-5
Reshaping MATLAB Arraysin Python 3-6
Handle Data Returned from MATLAB to Python 3-8
Use MATLAB ArraysinPython 3-9
Examples 3-9
Functions

4

iv Contents

Python Package Installation

1 Python Package Installation

Install a MATLAB Compiler SDK Python Package

In this section...

“With the Generated Installer” on page 1-2
“Without the Generated Installer” on page 1-2

With the Generated Installer

The Library Compiler app generates an installer that installs the MATLAB Runtime and the files
required to install the generated Python package. The app places the installer in the
for redistribution folder.

1
2
3
4

5

Copy the installer from the for redistribution folder to the desired location.

Run the installer.

Note where the installer writes the Python package files.

When the installer finishes, open a command terminal in the folder containing the Python
package files.

Run the Python setup script. To install to a location other than the default, consult "Installing
Python Modules" in the official Python documentation.

python setup.py install
Set the required environment variables.

On Linux®:

setenv LD LIBRARY PATH ${LD LIBRARY PATH}:mcrroot/runtime/glnxa64:
mcrroot/bin/glnxa64:mcrroot/sys/os/glnxa64:
mcrroot/sys/opengl/lib/glnxa64

On OS X:

setenv DYLD LIBRARY_PATH ${DYLD LIBRARY PATH}:mcrroot/runtime/maci64:
mcrroot/sys/os/maci64:mcrroot/bin/maci64

Note If LD LIBRARY PATH is not defined on Linux, remove ${LD LIBRARY PATH}: from the
code to set the environment variables. Similarly, on OS X, remove ${DYLD_LIBRARY PATH}: if
DYLD LIBRARY_ PATH is not defined.

Note mcrroot is the full path to the MATLAB Runtime installation.

Note A command must be entered as a single line without white space between path
components. Commands are wrapped here for readability.

Without the Generated Installer

If you already have the MATLAB Runtime installed, you can install the Python package.

1
2

1-2

Copy the contents of the for redistribution files only folder to the desired location.
Open a command terminal in the folder containing the Python package files.

Install a MATLAB Compiler SDK Python Package

Run the Python setup script. To install to a location other than the default, consult "Installing
Python Modules" in the official Python documentation.

python setup.py install
Set the required environment variables.

On Linux:

setenv LD LIBRARY PATH $LD LIBRARY PATH:mcrroot/runtime/glnxa64:
mcrroot/bin/glnxa64:mcrroot/sys/os/glnxa64:
mcrroot/sys/opengl/lib/glnxa64

On OS X:

setenv DYLD LIBRARY PATH $DYLD LIBRARY PATH:mcrroot/runtime/maci64:
mcrroot/sys/os/maci64:mcrroot/bin/maci64

Note mcrroot is the full path to the MATLAB Runtime installation.

Note A command must be entered as a single line without white space between path
components. Commands are wrapped here for readability.

See Also

Related Examples

“Import Compiled Python Packages” on page 2-3
“Initialize the MATLAB Runtime” on page 2-4

1-3

Python Integration

* “Integrate a Python Package” on page 2-2

* “Import Compiled Python Packages” on page 2-3

* “Initialize the MATLAB Runtime” on page 2-4

* “Invoke a Compiled MATLAB Function” on page 2-6

* “Invoke a Compiled MATLAB Function Asynchronously” on page 2-8

* “Integrate Python Packages on Mac OS X” on page 2-9

+ “Differences Between MATLAB Engine API for Python and MATLAB Compiler SDK” on page 2-10

2 Python Integration

Integrate a Python Package

To integrate a MATLAB Compiler SDK Python Package:

2-2

1

Install the compiled Python Package.

See “Install a MATLAB Compiler SDK Python Package” on page 1-2.

In consultation with the MATLAB programmer, collect the MATLAB function signatures that
comprise the services in the application.

Import the compiled Python package.

See “Import Compiled Python Packages” on page 2-3.
Write the Python code to initialize the MATLAB Runtime, and load the MATLAB code.

See “Initialize the MATLAB Runtime” on page 2-4.
Create the required MATLAB data for function inputs and outputs.

See “MATLAB Arrays as Python Variables” on page 3-3.
Invoke the MATLAB functions.

See “Invoke a Compiled MATLAB Function” on page 2-6 or “Invoke a Compiled MATLAB
Function Asynchronously” on page 2-8.

Terminate each package using its terminate () function. If you do not call this function
explicitly, it is called automatically when the program exits.

Import Compiled Python Packages

Import Compiled Python Packages

The MATLAB Compiler SDK Python target generates the Python code into a package that must be
imported into Python before you can use the compiled MATLAB functions. You specify the package
name and the namespace when compiling the MATLAB functions.

» Ifyou use the Library Compiler app, you specify the package name with the Library Name field
and the namespace with the Namespace field.

The Library Name field defaults to the name of the first MATLAB file listed in the app. You can
leave the Namespace field empty.

* Ifyou use the mcc function, you specify the package name and namespace as part of the -W
python:namespace.packageName flag.

Specifying the namespace is optional.

For example, if you compile your MATLAB functions and specify the package name asaddmatrix
with no namespace, you import it as follows:

import addmatrix

If you compile your MATLAB functions using the mcc command with the option -W
python:com.mathworks.addmatrix, you import it as follows:

import com.mathworks.addmatrix

See Also

Related Examples

. “Generate a Python Package and Build a Python Application”
. “Package Python Applications from Command Line”

2-3

2 Python Integration

Initialize the MATLAB Runtime

2-4

When integrating compiled MATLAB functions into a Python application, your code must initialize the
MATLAB Runtime:

1 Callthe initialize runtime() function, which allows you to provide a list of startup options
to the MATLAB Runtime.

2 Usethe initialize() function of each compiled package in the application. The first time the
function is called, a MATLAB Runtime is loaded and started.

Provide MATLAB Runtime Startup Options

Note On Mac OS X, you must pass the MATLAB Runtime options to the mwpython command when
starting Python. Use -mlstartup followed by a comma-separated list of MATLAB Runtime options.
MATLAB Runtime options passed to initialize runtime() are ignored.

The MATLAB Runtime has two startup options that you can specify:

* -nojvm — disable the Java® Virtual Machine, which is enabled by default. This can help improve
the MATLAB Runtime performance.

* -nodisplay — on Linux, run the MATLAB Runtime without display functionality.

You specify these options before you initialize the compiled MATLAB functions. You do so by calling

the initialize runtime() method of a generated Python package with the MATLAB Runtime

options. The list of MATLAB Runtime options is passed as a list of strings. For example, to start the
MATLAB Runtime for the package addmat rix with no display and no Java Virtual Machine:

import addmatrix
addmatrix.initialize runtime(['-nojvm', '-nodisplay'l])

If your application uses multiple Python packages, you call initialize runtime() from only one
package. The first call sets the run-time options for the MATLAB Runtime session. Any subsequent
calls are ignored.

Start MATLAB Runtime with Compiled MATLAB Functions

To invoke a compiled MATLAB function, load it into the MATLAB Runtime. Do this by calling the
initialize() method of the generated Python package. The initialize() method returns an
object that can be used to invoke the compiled MATLAB functions in the package. For example, to
start the MATLAB Runtime and load the MATLAB functions in the addmatrix package, use:

import addmatrix

myAdder = addmatrix.initialize()

Note Ifthe initialize runtime() function is not called before a call to initialize() function,
the MATLAB Runtime is started with no startup options.

Initialize the MATLAB Runtime

Note You cannot import matlab.engine after importing your component. For more information on
matlab.engine, see “Start and Stop MATLAB Engine for Python”.

See Also

More About
. “Integrate Python Packages on Mac OS X” on page 2-9

2-5

2 Python Integration

Invoke a Compiled MATLAB Function

2-6

In this section...

“Invoke a MATLAB Function with a Single Output” on page 2-6
“Invoke a MATLAB Function with Zero Outputs” on page 2-7
“Receive Multiple Results as Individual Variables” on page 2-7

“Receive Multiple Results as a Single Object” on page 2-7

Invoke a compiled MATLAB function using the Python object returned from the initialize()
function.

resultl,...resultN = my client.function name(in_args, nargout=nargs,
stdout=out stream,
stderr=err_stream)

* my client — Name of object returned from initialize()
» function name — Name of the function to invoke

* 1in args — Comma-separated list of input arguments

* nargs — Number of expected results. The default value is 1.

* out stream — Python StringIO object receiving the console output. The default is to direct
output to the console.

* err_stream — Python StringIO0 object receiving the error output. The default is to direct
output to the console.

Each variable on the left side of the function call is populated with a single return value.

Note If you provide less than nargs variables on the left side of the function call, the last listed
variable contains a list of the remaining results. For example

resultl, result2 = myMagic.triple(5,nargout=3)

leaves resultl containing a single value and result2 containing a list with two values.

Invoke a MATLAB Function with a Single Output

To invoke the MATLAB function result = mutate(ml, m2, m3) from the package mutations,
you use this code:

import mutations
import matlab

myMutator = mutations.initialize()

ml = matlab.double([1,2,3])
m2 = matlab.double([10,20,30])
m3 = matlab.double([100,200,300])

result = myMutator.mutate(ml,m2,m3)

Invoke a Compiled MATLAB Function

Invoke a MATLAB Function with Zero Outputs

To invoke the MATLAB function mutate(ml,m2,m3) from the package mutations, you use this
code:

import mutations
import matlab

myMutator = mutations.initialize()

ml = matlab.double([1,2,3])
m2 = matlab.double([10,20,30])
m3 = matlab.double([100,200,300])

myMutator.mutate(ml,m2,m3,nargout=0)

Receive Multiple Results as Individual Variables

To invoke the MATLAB function c1,c2 = copy(0l,02) from the package copier, use this code:

>>> import copier

>>> import matlab

>>> myCopier = copier.initialize()

>>> cl,c2 = myCopier.copy("blue",10,nargout=2)
>>> print(cl)

"blue"

>>> print(c2)

10

Receive Multiple Results as a Single Object

To invoke the MATLAB function copies = copy(o0l,02) from the package copier, use this code:

>>> import copier

>>> import matlab

>>> myCopier = copier.initialize()

>>> copies = myCopier.copy("blue",10,nargout=2)
>>> print(copies)

["blue",10]

See Also

Related Examples
. “Initialize the MATLAB Runtime” on page 2-4
. “Generate a Python Package and Build a Python Application”

2-7

2 Python Integration

Invoke a Compiled MATLAB Function Asynchronously

Asynchronously invoke a compiled MATLAB function that uses the Python object returned from the
initialize() function by passing async = True.

future = my client.function name(in args, nargout=nargs,
stdout=out stream,
stderr=err_stream,
async=True)

* my client — Name of object returned from initialize()

* function name — Name of the function to invoke

* 1in args — Comma-separated list of input arguments

* nargs — Number of results expected from the server

* out stream — Python StringIO0 object receiving the console output
* err_stream — Python StringIO object receiving the error output

When the async keyword is set to True, the MATLAB function is placed into a processing queue and
a Python Future object is returned. You use the Future object to retrieve the results when the
MATLAB function is finished processing.

To invoke the MATLAB function c1, c2= copy(ol,02) from the package copier asynchronously,
use the following code:

>>> import mutations
>>> import matlab
>>> myMutator = mutations.initialize()
>>> ml = matlab.double([1,2,3])
>>> m2 = matlab.double([10,20,30])
>>> m3 = matlab.double([100,200,300])
>>> resultFuture = myMutator.mutate(ml,m2,m3, async=True)
>>> while !resultFuture.done():
time.sleep(1)

>>> result = resultFuture.result()

Tip You can cancel asynchronous requests using the cancel () method of the Future object.

See Also

Related Examples
. “Initialize the MATLAB Runtime” on page 2-4
. “Generate a Python Package and Build a Python Application”

2-8

Integrate Python Packages on Mac 0OS X

Integrate Python Packages on Mac OS X

To use MATLAB Compiler SDK Python packages on Mac OS X, use the mwpython script. The

mwpython script is located in the mcrroot\bin folder. mcrroot is the location of your MATLAB
Runtime installation.

For example, to run the example in “Generate a Python Package and Build a Python Application” you
enter mwpython getmagic.py.

See Also
mwpython

2-9

2 Python Integration

Differences Between MATLAB Engine API for Python and
MATLAB Compiler SDK

MATLAB Engine API for Python enables you to call MATLAB as a computational engine. The main
differences between MATLAB Engine API for Python and MATLAB Compiler SDK for Python are as
follows:

* MATLAB Engine API for Python starts a MATLAB session out-of-process, which executes MATLAB
as a separate process. MATLAB Compiler SDK for Python starts MATLAB Runtime in-process.

* You can use MATLAB Engine API for Python to call built-in or user-written MATLAB functions.
MATLAB Compiler SDK for Python can only call user-written MATLAB functions.

For an example of calling user-written MATLAB code with MATLAB Engine API for Python, see
“Call User Scripts and Functions from Python”.

* MATLAB Engine API for Python allows you to work with a workspace, while MATLAB Compiler
SDK for Python does not. Therefore you cannot call MATLAB classes (handles) with MATLAB
Compiler SDK for Python.

For more information on MATLAB Engine workspace, see “Use MATLAB Engine Workspace in
Python”.

See Also

Related Examples

. “Generate a Python Package and Build a Python Application”
. “Initialize the MATLAB Runtime” on page 2-4

. “Get Started with MATLAB Engine API for Python”

. “Start and Stop MATLAB Engine for Python”

. “Call MATLAB Functions from Python”

2-10

Data Handling

* “Pass Data to MATLAB from Python” on page 3-2

* “MATLAB Arrays as Python Variables” on page 3-3

* “Handle Data Returned from MATLAB to Python” on page 3-8
* “Use MATLAB Arrays in Python” on page 3-9

3 Data Handling

Pass Data to MATLAB from Python

When you pass data as input arguments to MATLAB functions from Python, MATLAB converts the

data into equivalent MATLAB data types.

Python Input Argument Type

Resulting MATLAB Data Type

(scalar unless otherwise noted)

matlab numeric array object (see “MATLAB
Arrays as Python Variables” on page 3-3)

Numeric array

float double

complex Complex double

int int32(Windows®)
int64(Linux and Mac)

long @ int64

float('nan') NaN

float('inf'") Inf

bool logical

str char

bytearray uint8 array

bytes uint8 array

dict Structure if all keys are strings
Not supported otherwise

list Cell array

set Cell array

tuple Cell array

memoryview Not supported

range Cell array

None Not supported

module. type

Not supported

a. long is a data type of Python 2.7 only

See Also

Related Examples

. “MATLAB Arrays as Python Variables” on page 3-3

. “Use MATLAB Arrays in Python” on page 3-9

. “Handle Data Returned from MATLAB to Python” on page 3-8

MATLAB Arrays as Python Variables

MATLAB Arrays as Python Variables

In this section...

“Create MATLAB Arrays in Python” on page 3-3

“MATLAB Array Attributes and Methods in Python” on page 3-4
“Multidimensional MATLAB Arrays in Python” on page 3-5
“Index Into MATLAB Arrays in Python” on page 3-5

“Slice MATLAB Arrays in Python” on page 3-5

“Reshaping MATLAB Arrays in Python” on page 3-6

The matlab Python package provides array classes to represent arrays of MATLAB numeric types as
Python variables. Other MATLAB types are also supported, as listed in “Pass Data to MATLAB from
Python”. For information on installing the matlab Python package, see “Install a MATLAB Compiler
SDK Python Package” on page 1-2.

Create MATLAB Arrays in Python

You can create MATLAB numeric arrays in a Python session by calling constructors from the matlab
Python package (for example, matlab.double, matlab.int32). The name of the constructor
indicates the MATLAB numeric type. You can pass MATLAB arrays as input arguments to MATLAB
functions called from Python. When a MATLAB function returns a numeric array as an output
argument, the array is returned to Python.

You can initialize the array with an optional initializer input argument that contains numbers.
The initializer argument must be a Python sequence type such as a list or a tuple. The optional
size input argument sets the size of the initialized array. To create multidimensional arrays, specify
initializer to contain multiple sequences of numbers, or specify size to be multidimensional. You
can create a MATLAB array of complex numbers by setting the optional is complex keyword
argument to True. The mlarray module provides the MATLAB array constructors listed in the table.

Class from matlab Package |Constructor Call in Python MATLAB Numeric Type

matlab.double matlab.double(Double precision
initializer=None,
size=None,

is_complex=False)

matlab.single matlab.single(Single precision
initializer=None,
size=None,

is_complex=False)

matlab.int8 matlab.int8(8-bit signed integer
initializer=None,
size=None,

is complex=False)

matlab.int16 matlab.int16(16-bit signed integer
initializer=None,
size=None,

is complex=False)

3-3

3 Data Handling

3-4

Class from matlab Package

Constructor Call in Python

MATLAB Numeric Type

matlab.int32

matlab.int32(

32-bit signed integer

initializer=None,
size=None,
is complex=False)

matlab.int64(
initializer=None,
size=None,

is _complex=False)

matlab.uint8(
initializer=None,
size=None,
is_complex=False)

matlab.uint16(
initializer=None,
size=None,

is _complex=False)

matlab.uint32(
initializer=None,
size=None,

is complex=False)

matlab.uint64(
initializer=None,
size=None,

is _complex=False)

matlab.int642 64-bit signed integer

matlab.uint8 8-bit unsigned integer

matlab.uintl6 16-bit unsigned integer

matlab.uint32 32-bit unsigned integer

matlab.uint64® 64-bit unsigned integer

matlab.logical(

initializer=None,

size=None)¢

a. In Python on Windows, matlab.int64 is converted to int32 in MATLAB. Also, MATLAB cannot return an int64 array
to Python.

b. In Python on Windows, matlab.uint64 is converted to uint32 in MATLAB. Also, MATLAB cannot return a uint64
array to Python.

c. Logicals cannot be made into an array of complex numbers.

matlab.logical Logical

When you create an array with N elements, the size is 1-by-N because it is a MATLAB array.

import matlab

A = matlab.int8([1,2,3,4,5])

print(A.size)

(1, 5)

The initializer is a Python list containing five numbers. The MATLAB array size is 1-by-5, indicated by
the tuple (1,5).

MATLAB Array Attributes and Methods in Python

All MATLAB arrays created with matlab package constructors have the attributes and methods listed
in the following table:

Attribute or Method Purpose

size Size of array returned as a tuple

MATLAB Arrays as Python Variables

Attribute or Method Purpose
reshape(size) Reshape the array as specified by the sequence
size

Multidimensional MATLAB Arrays in Python

In Python, you can create multidimensional MATLAB arrays of any numeric type. Use two Python lists
of floats to create a 2-by-5 MATLAB array of doubles.

import matlab

A = matlab.double(I[[1,2,3,4,5], [6,7,8,9,1011)
print(A)
[[l.0,2.0,3.0,4.0,5.0],[6.0,7.0,8.0,9.0,10.0]]
The size attribute of A shows it is a 2-by-5 array.

print(A.size)

(2, 5)

Index Into MATLAB Arrays in Python

You can index into MATLAB arrays just as you can index into Python lists and tuples.
import matlab

A = matlab.int8([1,2,3,4,5])

print(A[0])

[1,2,3,4,5]

The size of the MATLAB array is (1,5); therefore, A[0] is [1,2,3,4,5]. Index into the array to get
3.

print(A[0][2])
3

Python indexing is zero-based. When you access elements of MATLAB arrays in a Python session, use
zero-based indexing.

This example shows how to index into a multidimensional MATLAB array.

A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])
print(A[1][2])

8.0

Slice MATLAB Arrays in Python

You can slice MATLAB arrays just as you can slice Python lists and tuples.

import matlab
A = matlab.int8([1,2,3,4,5])
print(A[0][1:4])

3 Data Handling

3-6

[2,3,4]

You can assign data to a slice. This example shows an assignment from a Python list to the array.

A = matlab.double([[1,2,3,41,[5,6,7,81])

A[0] = [10,20,30,40]

print(A)

[[10.0,20.0,30.0,40.0],[5.0,6.0,7.0,8.0]]

You can assign data from another MATLAB array, or from any Python iterable that contains numbers.

You can specify slices for assignment, as shown in this example.

A = matlab.int8([1,2,3,4,5,6,7,8])

A[0][2:4] = [30,40]
A[0][6:8] = [70,80]
print(A)

[[1,2,30,40,5,6,70,80]]

Note Slicing MATLAB arrays behaves differently from slicing a Python list. Slicing a MATLAB array
returns a view instead of a shallow copy.

Given a MATLAB array and a Python list with the same values, assigning a slice results in different
results.

>>>mlarray = matlab.int32([[1,2],[3,4],[5,611)
>>>py_list = [[1,2],[3,4]1,[5,6]]

>>>mlarray[0] = mlarray[0][::-1]

>>>py 1ist[0] = py list[O][::-1]

>>>mlarray[0]
matlab.int32([[2,2],[3,41,[5,611)

>>>py list

[[2,11,13,4],15,6]]

Reshaping MATLAB Arrays in Python

You can reshape a MATLAB array in Python with the reshape method. The input argument, size,
must be a sequence that does not change the number of elements in the array. Use reshape to
change a 1-by-9 MATLAB array to 3-by-3.

import matlab

A = matlab.int8([1,2,3,4,5,6,7,8,9])
A.reshape((3,3))

print(A)

(r1,4,71,12,5,81,13,6,91]

MATLAB Arrays as Python Variables

See Also

Related Examples

. “Use MATLAB Arrays in Python” on page 3-9
. “Pass Data to MATLAB from Python”

3 Data Handling

Handle Data Returned from MATLAB to Python

When MATLAB functions return output arguments, MATLAB converts the data into equivalent Python

3-8

data types.

MATLAB Output Argument Type
(scalar unless otherwise noted)

Resulting Python Data Type

Numeric array

matlab numeric array object (see “MATLAB
Arrays as Python Variables” on page 3-3)

containers.Map, categorical array)

double float

single

Complex (any numeric type) complex
int8 int

uint8

intl6

uintl6

int32

uint32 int

int64 long

uint64

NaN float('nan')
Inf float('inf")
logical bool

char array (1-by-N, N-by-1) str

char array (M-by-N) Not supported
structure dict

Row or column cell array list

M-by-N cell array Not supported
MATLAB handle object (table, Not supported

Other object (e.g., Java)

Not supported

Function handle Not supported
Sparse array Not supported
String array Not supported

Structure array

Not supported

See Also

Related Examples

. “MATLAB Arrays as Python Variables” on page 3-3

. “Use MATLAB Arrays in Python” on page 3-9

. “Pass Data to MATLAB from Python” on page 3-2

Use MATLAB Arrays in Python

Use MATLAB Arrays in Python

To use MATLAB arrays in Python, you can either install the Python engine before running your
packaged application, as described in “Install MATLAB Engine API for Python”, or use import
mypackage before import matlab in the following programs.

The MATLAB Engine API for Python provides a Python package named matlab that enables you to
call MATLAB functions from Python. The matlab package provides constructors to create MATLAB
arrays in Python. It can create arrays of any MATLAB numeric or logical type from Python sequence
types. Multidimensional MATLAB arrays are supported. For a list of other supported array types, see
“Pass Data to MATLAB from Python”.

Examples

1

Create a MATLAB array in Python, and call a MATLAB function on it. Assuming that you have a
package named mypackage and a method called mysqrt inside the package, you can use
matlab.double to create an array of doubles given a Python list that contains numbers. You can
call the MATLAB function mysqrt on X, and the return value is another matlab.double array
as shown in the following program:

import matlab

import mypackage

pkg = mypackage.initialize()

x = matlab.double([1,4,9,16,25])
print(pkg.mysqrt(x))

The output is:

[[1.0,2.0,3.0,4.0,5.0]]

2 Create a multidimensional array. The magic function returns a 2-D array to Python scope.
Assuming you have method called mysqrt inside mypackage, you can use the following code to
call that method:
import matlab
import mypackage
pkg = mypackage.initialize()

x = matlab.double([1,4,9,16,25])

print(pkg.mymagic(6))

The output is:

[[35.0,1.0,6.0,26.0,19.0,24.0],[3.0,32.0,7.0,21.0,23.0,25.0],
[31.0,9.0,2.0,22.0,27.0,20.0],[8.0,28.0,33.0,17.0,10.0,15.0],
[30.0,5.0,34.0,12.0,14.0,16.0],[4.0,36.0,29.0,13.0,18.0,11.0]]

See Also

More About

“MATLAB Arrays as Python Variables” on page 3-3
“Pass Data to MATLAB from Python”

3-9

Functions

4 Functions

4-2

compiler.build.pythonPackage

Create Python package for deployment outside MATLAB

Syntax

compiler.build.pythonPackage(FunctionFiles)
compiler.build.pythonPackage(FunctionFiles,Name,Value)
compiler.build.pythonPackage(opts)

results = compiler.build.pythonPackage()

Description

compiler.build.pythonPackage(FunctionFiles) creates a Python package using the MATLAB
functions specified by FunctionFiles.

compiler.build.pythonPackage(FunctionFiles,Name,Value) creates a Python package
with additional options specified using one or more name-value arguments. Options include the
package name, output directory, and additional files to include.

compiler.build.pythonPackage(opts) creates a Python package with options specified using a
compiler.build.PythonPackageOptions object opts. You cannot specify any other options
using name-value arguments.

results = compiler.build.pythonPackage() returns build information as a
compiler.build.Results object using any of the input argument combinations in previous
syntaxes. The build information consists of the build type, paths to the compiled files, and build
options.

Examples

Create Python Package Using File
Create a Python package using a function file that generates a magic square.

In MATLAB, locate the MATLAB function that you want to deploy as a Python package. For this
example, use the file magicsquare.mlocated in matlabroot\extern\examples\compiler.

appFile = fullfile(matlabroot, 'extern', 'examples', 'compiler', 'magicsquare.m');

Build a Python package using the compiler.build.pythonPackage command.

compiler.build.pythonPackage(appFile);

The build function creates the following files within a folder named magicsquarepythonPackage in
your current working directory:

* GettingStarted.html

+ example

* mccExcludedFiles.log

compiler.build.pythonPackage

* readme.txt

* requiredMCRProducts. txt
* setup.py

* unresolvedSymbols.txt

Customize Python Package
Create a Python package and customize it using name-value arguments.

For this example, use the file magicsquare.mlocated in matlabroot\extern\examples
\compiler.

appFile = fullfile(matlabroot, 'extern', 'examples','compiler', 'magicsquare.m');

Build a Python package using the compiler.build.pythonPackage command. Use name-value
arguments to specify the package name, add a MAT-file, and enable verbose output.
compiler.build.pythonPackage(appFile, 'PackageName', 'MyMagicSquare',...

'AdditionalFiles', 'myvars.mat',...
'Verbose','on');

Create Multiple Python Packages Using Options Object
Create multiple Python packages using a compiler.build.PythonPackageOptions object.

For this example, use the file magicsquare.m located in matlabroot\extern\examples
\compiler.

appFile = fullfile(matlabroot, 'extern', 'examples', 'compiler', 'magicsquare.m');

Create a PythonPackageOptions object using appFile. Use name-value arguments to specify a
common output directory, disable automatic detection of data files, and enable verbose output.

opts = compiler.build.PythonPackageOptions(appFile,...
'OutputDir', 'D:\Documents\MATLAB\work\PythonPackageBatch"',...
'AutoDetectDataFiles', 'off',...
'Verbose','on")

opts =
PythonPackageOptions with properties:

FunctionFiles: {'C:\Program Files\MATLAB\R202la\extern\examples\compiler\magicsquare
SampleGenerationFiles: {}
AdditionalFiles: {}
AutoDetectDataFiles: off
Verbose: on
OutputDir: 'D:\Documents\MATLAB\work\PythonPackageBatch'

Build the Python package using the PythonPackageOptions object.

compiler.build.pythonPackage(opts);

To compile using the function file myMagic2.m with the same options, use dot notation to modify the
FunctionFiles argument of the existing PythonPackageOptions object before running the build
function again.

4-3

‘l Functions

4-4

opts.FunctionFiles = 'myMagic2.m';
compiler.build.pythonPackage(opts);

By modifying the FunctionFiles argument and recompiling, you can compile multiple components
using the same options object.

Get Build Information from Python Package

Create a Python package and save information about the build type, generated files, and build options
toa compiler.build.Results object.

Compile using the file magicsquare.mlocated in matlabroot\extern\examples\compiler.

results = compiler.build.pythonPackage('magicsquare.m');

results =
Results with properties:

BuildType: 'pythonPackage'
Files: {3x1 cell}
Options: [1x1 compiler.build.PythonPackageOptions]

The Files property contains the paths to the following:

* example folder
* setup.py
* GettingStarted.html

Input Arguments

FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.

Example: ["myfuncl.m", "myfunc2.m"]
Data Types: char | string | cell

opts — Python package build options
compiler.build.PythonPackageOptions object

Python package build options, specified as a compiler.build.PythonPackageOptions object.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Verbose', 'on

compiler.build.pythonPackage

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files to include in the Python package, specified as a character vector, a string scalar, a
string array, or a cell array of character vectors. File paths can be relative to the current working
directory or absolute.

Example: 'AdditionalFiles', ["myvars.mat", "data.txt"]
Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off"', or as numeric or logical 1 (true)
or 0 (false). Avalue of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0On0ffSwitchState.

» Ifyou set this property to 'on"', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the package.

» Ifyou set this property to 'off', then you must add data files to the package using the
AdditionalFiles option.

Example: 'AutoDetectDataFiles', 'off"'

Data Types: logical

PackageName — Name of Python package
character vector | string scalar

Name of the Python package, specified as a character vector or a string scalar. Specify
"PackageName' as a namespace, which is a period-separated list, such as
companyname.groupname.component. The name of the generated package is set to the last entry
of the period-separated list. The name must begin with a letter and contain only alphabetic
characters and periods.

Example: 'PackageName', 'mathworks.pythonpackage.mymagic'
Data Types: char | string

SampleGenerationFiles — MATLAB sample files
character vector | string scalar | cell array of character vectors | string array

MATLAB sample files used to generate sample Python files for functions included with the package,
specified as a character vector, a string scalar, a string array, or a cell array of character vectors. File
paths can be relative to the current working directory or absolute. Files must have a .m extension.

Example: 'SampleGenerationFiles',["samplel.m", "sample2.m"]

Data Types: char | string | cell

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

4 Functions

4-6

The default name of the build folder is the package name appended with pythonPackage.
Example: 'OQutputDir', 'D:\Documents\MATLAB\work\mymagicpythonPackage'
Data Types: char | string

Verbose — Flag to control build verbosity
"off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off"', or as numeric or logical 1 (true)or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0On0ffSwitchState.

» Ifyou set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

* Ifyou set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose', 'on'

Data Types: logical

Output Arguments

results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object contains:

* Build type, which is 'pythonPackage'
* Paths to the following items:

+ example folder
* setup.py
* GettingStarted.html
* Build options, specified as a PythonPackageOptions object

See Also
compiler.build.PythonPackageOptions

Introduced in R2021a

compiler.build.PythonPackageOptions

compiler.build.PythonPackageOptions

Options for building Python packages

Syntax

opts compiler.build.PythonPackageOptions(FunctionFiles)
opts = compiler.build.PythonPackageOptions(FunctionFiles,Name,Value)

Description

opts = compiler.build.PythonPackageOptions(FunctionFiles) creates a
PythonPackageOptions object using MATLAB functions specified by FunctionFiles. Use the
PythonPackageOptions object as an input to the compiler.build.pythonPackage function.

opts = compiler.build.PythonPackageOptions(FunctionFiles,Name,Value) creates a
PythonPackageOptions object with options specified using one or more name-value arguments.
Options include the package name, output directory, and additional files to include.

Examples

Create Python Package Options Object Using File
Create a PythonPackageOptions object using file input.

For this example, use the file magicsquare.mlocated in matlabroot\extern\examples
\compiler.

appFile = fullfile(matlabroot, 'extern', 'examples', 'compiler', 'magicsquare.m');
opts = compiler.build.PythonPackageOptions(appFile)

opts =
PythonPackageOptions with properties:

FunctionFiles: {'C:\Program Files\MATLAB\R202la\extern\examples\compiler"'}
PackageName: 'example.magicsquare'
SampleGenerationFiles: {}
AdditionalFiles: {}
AutoDetectDataFiles: on
Verbose: off
OQutputDir: '.\magicsquarepythonPackage'

You can modify the property values of an existing PythonPackageOptions object using dot
notation. For example, enable verbose output.

opts.Verbose = 'on'
opts =

PythonPackageOptions with properties:

‘l Functions

FunctionFiles: {'C:\Program Files\MATLAB\R202la\extern\examples\compiler'}
PackageName: 'example.magicsquare'
SampleGenerationFiles: {}
AdditionalFiles: {}
AutoDetectDataFiles: on
Verbose: on
OQutputDir: '.\magicsquarepythonPackage'

Use the PythonPackageOptions object as an input to the compiler.build.pythonPackage
function to build a Python package.

buildResults = compiler.build.pythonPackage(opts);

Customize Python Package Options Object
Create a PythonPackageOptions object and customize it using name-value arguments.

For this example, use the file magicsquare.mlocated in matlabroot\extern\examples
\compiler. Use name-value arguments to specify the output directory and disable automatic
detection of data files.

opts = compiler.build.PythonPackageOptions('magicsquare.m', ...
'OutputDir', 'D:\Documents\MATLAB\work\MagicPythonPackage', ...
'AutoDetectDataFiles', 'off"')

opts =
PythonPackageOptions with properties:

FunctionFiles: {'C:\Program Files\MATLAB\R202la\extern\examples\compiler'}
PackageName: 'example.magicsquare'
SampleGenerationFiles: {}
AdditionalFiles: {}
AutoDetectDataFiles: off
Verbose: off
OutputDir: 'D:\Documents\MATLAB\work\MagicPythonPackage'

You can modify the property values of an existing PythonPackageOptions object using dot
notation. For example, enable verbose output.

opts.Verbose = 'on'
opts =
PythonPackageOptions with properties:

FunctionFiles: {'C:\Program Files\MATLAB\R202la\extern\examples\compiler'}
PackageName: 'example.magicsquare'
SampleGenerationFiles: {}
AdditionalFiles: {}
AutoDetectDataFiles: off
Verbose: on
OutputDir: 'D:\Documents\MATLAB\work\MagicPythonPackage'

Use the PythonPackageOptions object as an input to the compiler.build.pythonPackage
function to build a Python package.

4-8

compiler.build.PythonPackageOptions

buildResults = compiler.build.pythonPackage(opts);

Input Arguments

FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a . m extension.

Example: ["myfuncl.m", "myfunc2.m"]

Data Types: char | string | cell
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ...,NameN, ValueN.

Example: 'Verbose', 'on'

AdditionalFiles — Additional files
character vector | string scalar | cell array of character vectors | string array

Additional files to include in the Python package, specified as a character vector, a string scalar, a
string array, or a cell array of character vectors. File paths can be relative to the current working
directory or absolute.

Example: 'AdditionalFiles', ["myvars.mat", "data.txt"]

Data Types: char | string | cell

AutoDetectDataFiles — Flag to automatically include data files
'on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on"' or 'off"', or as numeric or logical 1 (true)
or O (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0n0OffSwitchState.

» Ifyou set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the package.

» If you set this property to 'off"', then you must add data files to the package using the
AdditionalFiles option.

Example: 'AutoDetectDataFiles', 'off"’

Data Types: logical

PackageName — Name of Python package
character vector | string scalar

Name of the Python package, specified as a character vector or a string scalar. Specify
'PackageName' as a namespace, which is a period-separated list, such as
companyname.groupname.component. The name of the generated package is set to the last entry

4-9

4 Functions

4-10

of the period-separated list. The name must begin with a letter and contain only alphabetic
characters and periods.

Example: 'PackageName', 'mathworks.pythonpackage.mymagic'

Data Types: char | string

SampleGenerationFiles — MATLAB sample files
character vector | string scalar | cell array of character vectors | string array

MATLAB sample files used to generate sample Python files for functions included with the package,
specified as a character vector, a string scalar, a string array, or a cell array of character vectors. File
paths can be relative to the current working directory or absolute. Files must have a . m extension.

Example: 'SampleGenerationFiles', ["samplel.m", "sample2.m"]

Data Types: char | string | cell

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the package name appended with pythonPackage.
Example: 'OQutputDir', 'D:\Documents\MATLAB\work\mymagicpythonPackage'
Data Types: char | string

Verbose — Flag to control build verbosity
'off' (default) | on/off logical value

Flag to control build verbosity, specified as 'on' or 'off"', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0On0OffSwitchState.

» If you set this property to 'on"', then the MATLAB command window displays progress
information indicating compiler output during the build process.

» If you set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose', 'on

Data Types: logical

Output Arguments

opts — Python package build options
PythonPackageOptions object

Python package build options, returned as a PythonPackageOptions object.

See Also
compiler.build.pythonPackage

compiler.build.PythonPackageOptions

Introduced in R2021a

4-11

‘l Functions

4-12

myDeployedModule.initialize

Initialize package and return a handle

Syntax

myobj = myDeployedModule.initialize()

Description

myobj = myDeployedModule.initialize() initializes a package consisting of one or more
deployed MATLAB functions. The return value is used as a handle on which any of the functions can
be executed.

Examples

Create a Handle to a Deployed MATLAB Function

This example shows how to create a handle to a package named myDeployedModule. This handle is
then used for calling a deployed MATLAB function called makesqr.

import myDeployedModule
myobj = myDeployedModule.initialize()
print(myobj.makesqr(3))

myobj.terminate()

Output Arguments

myobj — Output a handle to deployed MATLAB functions
Python object

Output a handle to deployed MATLAB functions, returned as a Python object used to execute
deployed MATLAB functions.

See Also
myDeployedModule.terminate

Topics
“Invoke a Compiled MATLAB Function” on page 2-6

myDeployedModule.initialize_runtime

myDeployedModule.initialize_runtime

Initialize MATLAB Runtime with a list of startup options

Syntax

myobj = myDeployedModule.initialize runtime()

Description

myobj = myDeployedModule.initialize runtime() initializes the MATLAB Runtime with a list
of startup options that affects all packages opened within the script.

If it is not called explicitly, it is executed automatically, with an empty list of options, by the first call
toinitialize(). Donotcall initialize runtime() after calling initialize(). There is no

corresponding terminate runtime() call. The MATLAB Runtime terminates automatically when
the script or session ends.

Input Arguments

in_args — Startup options to MATLAB Runtime
comma separated list of options

The MATLAB Runtime has two startup options that you can specify:

* -nojvm — Disable the Java Virtual Machine, which is enabled by default. This option can help
improve the MATLAB Runtime performance.

* -nodisplay — On Linux, run the MATLAB Runtime without display functionality.

Output Arguments

myobj — Output a handle to deployed MATLAB functions
Python object

Output a handle to deployed MATLAB functions, returned as a Python object used to execute
deployed MATLAB functions.

Examples

Specify MATLAB Runtime Options

This example shows how to specify MATLAB Runtime options when creating a handle to a package
named myDeployedModule.

import myDeployedModule
myobj = myDeployedModule.initialize runtime(['-nojvm', '-nodisplay'l])

print(myobj.makesqr(3))

4-13

4 Functions

4-14

myobj.terminate()
See Also
myDeployedModule.terminate

Topics
“Initialize the MATLAB Runtime” on page 2-4

myDeployedModule.terminate

myDeployedModule.terminate

Close a package

Syntax

myDeployedModule. terminate()

Description

myDeployedModule.terminate() closes a package consisting of one or more deployed MATLAB
functions. myDeployedModule.terminate() can be called on a package handle, after which no
functions can be called on the handle.

If you exit from a script or session, myDeployedModule.terminate() is called automatically.
Hence, calling it explicitly is optional, but a good idea because it frees resources at that point.
Alternatively, you can use quit() or exit().

Examples

Close a Handle to a Deployed MATLAB Function

This example shows how to create a handle to a package named myDeployedModule, and close the
handle after calling a deployed MATLAB function.

import myDeployedModule
myobj = myDeployedModule.initialize()
print(myobj.makesqr(3))

myobj.terminate()

See Also
myDeployedModule.initialize | myDeployedModule.initialize runtime

Topics
“Invoke a Compiled MATLAB Function” on page 2-6

4-15

4 Functions

4-16

myDeployedModule.wait_for figures to close

Wait for all graphical figures to close before continuing

Syntax

myDeployedModule.wait for figures to close()

Description

myDeployedModule.wait for figures to close() enables the deployed application to process
graphics events. The purpose of myDeployedModule.wait for figures to close() is to block
execution of a calling program as long as figures created in deployed MATLAB code are displayed.

This function can only be called after initialize() has been called and before terminate() has
been called. If this function is not called, any figure windows initially displayed by the application
briefly appear, and then the application exits.

Examples

Keep a Figure in MATLAB Function Open

This example shows how to keep a MATLAB plot open after it is invoked using the showplot function
in a package named myDeployedModule.

import myDeployedModule

myobj = myDeployedModule.initialize()
myobj.showplot()

myobj.wait for figures to close()
myobj.terminate()

See Also
myDeployedModule.terminate

mwpython

mwpython

Start a Python session using a MATLAB Compiler SDK Python package on Mac OS X

Syntax

mwpython [-verbose] [py args] [-mlstartup opt[,opt]l] python scriptname
mwpython [-verbose] [py args] [-mlstartup opt[,opt]l] -c cmd
mwpython [-verbose] [py args] [-mlstartup opt[,opt]l] -m mod

Description

mwpython [-verbose] [py args] [-mlstartup opt[,opt]] python scriptname Starts a
Python session that executes a Python script.

mwpython [-verbose] [py args] [-mlstartup opt[,opt]] -c cmd Starts Python session
that executes a Python command.

mwpython [-verbose] [py args] [-mlstartup opt[,opt]l] -m mod Starts a Python session
that executes a Python module.

Input Arguments
py_args — Python arguments
Python arguments, specified as a comma-separated list.

opt[,opt] — MATLAB Runtime startup options
-nojvm | -nodisplay | -logfile

MATLAB Runtime startup options, specified as a comma-separated list.

* -nojvm — disable the Java Virtual Machine, which is enabled by default. This can help improve
the MATLAB Runtime performance.

* -nodisplay — on Linux, run the MATLAB Runtime without display functionality.
python_scriptname — Python script to execute

Python script to execute, specified as a character array with a . py extension.

cmd — Python command to execute

Python command to execute, specified as a character array.

mod — Python module to execute

Python module to execute, specified as a character array.

Note If you want to use a specific version of Python, set the PYTHONHOME environment variable on
your machine to point to the location of your desired Python installation prior to invoking mwpython.

4-17

‘l Functions

4-18

Examples

Execute a Python Script in Verbose Mode
mwpython -verbose myfile.py

Execute a Python Module with Arguments

mwpython -m mymod argl arg2

Introduced in R2015b

	Python Package Installation
	Install a MATLAB Compiler SDK Python Package
	With the Generated Installer
	Without the Generated Installer

	Python Integration
	Integrate a Python Package
	Import Compiled Python Packages
	Initialize the MATLAB Runtime
	Provide MATLAB Runtime Startup Options
	Start MATLAB Runtime with Compiled MATLAB Functions

	Invoke a Compiled MATLAB Function
	Invoke a MATLAB Function with a Single Output
	Invoke a MATLAB Function with Zero Outputs
	Receive Multiple Results as Individual Variables
	Receive Multiple Results as a Single Object

	Invoke a Compiled MATLAB Function Asynchronously
	Integrate Python Packages on Mac OS X
	Differences Between MATLAB Engine API for Python and MATLAB Compiler SDK

	Data Handling
	Pass Data to MATLAB from Python
	MATLAB Arrays as Python Variables
	Create MATLAB Arrays in Python
	MATLAB Array Attributes and Methods in Python
	Multidimensional MATLAB Arrays in Python
	Index Into MATLAB Arrays in Python
	Slice MATLAB Arrays in Python
	Reshaping MATLAB Arrays in Python

	Handle Data Returned from MATLAB to Python
	Use MATLAB Arrays in Python
	Examples

	Functions
	compiler.build.pythonPackage
	compiler.build.PythonPackageOptions
	myDeployedModule.initialize
	myDeployedModule.initialize_runtime
	myDeployedModule.terminate
	myDeployedModule.wait_for_figures_to_close
	mwpython

